hi @Rohini_vaidya !!
Here is how you can do that:
vectors = {
"a_vector": [1,2,3],
"b_vector": [1,2,3,4],
"c_vector": [1,2,3,4,5]
}
client.collections.delete("Test")
collection = client.collections.create(
"Test",
vectorizer_config=[
wvc.config.Configure.NamedVectors.none(name="a_vector"),
wvc.config.Configure.NamedVectors.none(name="b_vector"),
wvc.config.Configure.NamedVectors.none(name="c_vector"),
]
)
collection.data.insert(
properties={"text": "music for running", "brand": "Bosch"},
vector=vectors
)
now you can get your objects:
query = collection.query.fetch_objects(include_vector=True)
print(query.objects[0].properties)
print(query.objects[0].vector)
# outputs:
# {'text': 'music for running', 'brand': 'Bosch'}
# {'a_vector': [1.0, 2.0, 3.0], 'b_vector': [1.0, 2.0, 3.0, 4.0], 'c_vector': [1.0, 2.0, 3.0, 4.0, 5.0]}
You can also search using near_vector
:
query = collection.query.near_vector(
near_vector=[5,4,3,2,1], include_vector=True, target_vector="c_vector", return_metadata=wvc.query.MetadataQuery(distance=True)
)
print(query.objects[0].properties)
print(query.objects[0].vector)
print(query.objects[0].metadata.distance)
# outputs:
# {'text': 'music for running', 'brand': 'Bosch'}
# {'c_vector': [1.0, 2.0, 3.0, 4.0, 5.0], 'a_vector': [1.0, 2.0, 3.0], 'b_vector': [1.0, 2.0, 3.0, 4.0]}
# 0.3636362552642822
Let me know if this helps!
Thanks!