Hi everyone! I have an issue with the vectorizer module text2vec-transformers
. When doing some local tests with docker compose:
text2vector-transformers:
image: semitechnologies/transformers-inference:sentence-transformers-gtr-t5-large
environment:
ENABLE_CUDA: '0'
this leads to 1024-dim vectors, although sentence-transformers/gtr-t5-large · Hugging Face is 768-dim. When I generate vectors manually with sentence_transformers, the vectors are 768-dim. What do I miss here?
Schema:
{
"class": "Document",
"properties": [
...
],
"vectorizer": "text2vec-transformers",
"moduleConfig": {
"text2vec-transformers": {
"vectorizeClassName": false
},
"reranker-transformers": {}
},
"vectorIndexConfig": {
"distance": "cosine"
},
"replicationConfig": {
"factor": 3
},
"vectorIndexType": "hnsw",
"multiTenancyConfig": {
"enabled": true
}
}
Here is what /v1/meta shows:
{
"hostname": "http://[::]:8080",
"modules": {
"text2vec-transformers": {
"model": {
"_name_or_path": "./models/model",
"add_cross_attention": false,
"architectures": [
"T5EncoderModel"
],
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"d_ff": 4096,
"d_kv": 64,
"d_model": 1024,
"decoder_start_token_id": 0,
"dense_act_fn": "relu",
"diversity_penalty": 0,
"do_sample": false,
"dropout_rate": 0.1,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 1,
"exponential_decay_length_penalty": null,
"feed_forward_proj": "relu",
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1,
"is_decoder": false,
"is_encoder_decoder": true,
"is_gated_act": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_epsilon": 0.000001,
"length_penalty": 1,
"max_length": 20,
"min_length": 0,
"model_type": "t5",
"n_positions": 512,
"no_repeat_ngram_size": 0,
"num_beam_groups": 1,
"num_beams": 1,
"num_decoder_layers": 24,
"num_heads": 16,
"num_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_past": true,
"output_scores": false,
"pad_token_id": 0,
"prefix": null,
"problem_type": null,
"pruned_heads": {},
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"remove_invalid_values": false,
"repetition_penalty": 1,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": {
"summarization": {
"early_stopping": true,
"length_penalty": 2,
"max_length": 200,
"min_length": 30,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"prefix": "summarize: "
},
"translation_en_to_de": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to German: "
},
"translation_en_to_fr": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to French: "
},
"translation_en_to_ro": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to Romanian: "
}
},
"temperature": 1,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1,
"torch_dtype": "float32",
"torchscript": false,
"transformers_version": "4.29.2",
"typical_p": 1,
"use_bfloat16": false,
"use_cache": true,
"vocab_size": 32128
}
}
},
"version": "1.21.5"
}