Meta endpoint! Unexpected status code: 404, with response body: None

Description

I am trying out weviate vector store through langchain integration running default docker image , but can’t seem to get the client connection provided my code and logs bellow , i am now trying the collection methoad but it seems quite complex and new to me so wanted to give my existing code adapted to weviate . i have to use a peft finetuned model as generater hence i can’t find how to integrate that in the collection creation .

import json
from langchain_core.documents import Document
from langchain.embeddings import SentenceTransformerEmbeddings
import weaviate
from langchain_weaviate.vectorstores import WeaviateVectorStore

client = weaviate.connect_to_local()

def load_and_process_data(file_path):
    with open(file_path, 'r') as f:
        data = json.load(f)

    embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

    title_description_docs = []
    chunk_docs = []

    for outer_key, outer_value in data.items():
        for inner_key, inner_value in outer_value.items():
            if isinstance(inner_value, dict):
                title = inner_value.get("TITLE", "")
                description = inner_value.get("Description", "")
                lesson_id = inner_key
                page_content = f"Title: {title} Description: {description}"
                doc = Document(page_content=page_content, metadata={'lesson_id': lesson_id, 'title': title, 'description': description}, ids=[lesson_id])
                title_description_docs.append(doc)

                transcript_chunk = inner_value.get("Transcript_Chunk", {})
                for chunk_key, chunk_value in transcript_chunk.items():
                    # Processing each QA pair to add them directly into the metadata
                    qa_pairs = chunk_value.get('QA_pairs', [])
                    chunk_metadata = {
                        'lesson_id': inner_key,
                        'chunk_id': chunk_key,
                        'lesson_title': title,
                        'keywords': chunk_value.get('keywords', []),
                        'summary': chunk_value.get('Summary', ''),
                    }

                    for index, qa in enumerate(qa_pairs):
                        question_key = f'QA_pair_{index + 1}_Question'
                        answer_key = f'QA_pair_{index + 1}_Answer'
                        question = qa.get('Question', '')
                        answer = qa.get('Answer', '')

                        chunk_metadata[question_key] = question
                        chunk_metadata[answer_key] = answer

                    doc = Document(page_content=chunk_value.get('context', ''), metadata=chunk_metadata, ids=[chunk_key])
                    chunk_docs.append(doc)

    # Create databases
    db_title_description = WeaviateVectorStore.from_documents(title_description_docs, embedding_function, persist_directory="Data/title_description",client=client)
    db_chunks = WeaviateVectorStore.from_documents(chunk_docs, embedding_function, persist_directory="Data/chunks",client=client)

    return db_title_description, db_chunks

# Path to your JSON file
file_path = 'Data/RAG_Dataset.json'

db_title_description, db_chunks = load_and_process_data(file_path)

Server Setup Information

  • Weaviate Server Version: 1.24.7
  • Deployment Method: Docker
  • Multi Node? Number of Running Nodes: 1
  • Client Language and Version:
    • Name: weaviate-client , Version: 4.5.5
    • Name: langchain-weaviate , Version: 0.0.1.post1

Logs

---------------------------------------------------------------------------
UnexpectedStatusCodeError                 Traceback (most recent call last)
<ipython-input-15-dd7f7b1a24dc> in <cell line: 7>()
      5 from langchain_weaviate.vectorstores import WeaviateVectorStore
      6 
----> 7 client = weaviate.connect_to_local()
      8 
      9 def load_and_process_data(file_path):

7 frames
/usr/local/lib/python3.10/dist-packages/weaviate/connect/helpers.py in connect_to_local(host, port, grpc_port, headers, additional_config, skip_init_checks, auth_credentials)
    155         auth_client_secret=auth_credentials,
    156     )
--> 157     return __connect(client)
    158 
    159 

/usr/local/lib/python3.10/dist-packages/weaviate/connect/helpers.py in __connect(client)
    343     except Exception as e:
    344         client.close()
--> 345         raise e

/usr/local/lib/python3.10/dist-packages/weaviate/connect/helpers.py in __connect(client)
    339 def __connect(client: WeaviateClient) -> WeaviateClient:
    340     try:
--> 341         client.connect()
    342         return client
    343     except Exception as e:

/usr/local/lib/python3.10/dist-packages/weaviate/client.py in connect(self)
    280         if self._connection.is_connected():
    281             return
--> 282         self._connection.connect(self.__skip_init_checks)
    283 
    284     def is_connected(self) -> bool:

/usr/local/lib/python3.10/dist-packages/weaviate/connect/v4.py in connect(self, skip_init_checks)
    653 
    654     def connect(self, skip_init_checks: bool) -> None:
--> 655         super().connect(skip_init_checks)
    656         # create GRPC channel. If Weaviate does not support GRPC then error now.
    657         self._grpc_channel = self._connection_params._grpc_channel(

/usr/local/lib/python3.10/dist-packages/weaviate/connect/v4.py in connect(self, skip_init_checks)
    139         # need this to get the version of weaviate for version checks
    140         try:
--> 141             self._weaviate_version = _ServerVersion.from_string(self.get_meta()["version"])
    142         except (WeaviateConnectionError, ReadError, RemoteProtocolError) as e:
    143             raise WeaviateStartUpError(f"Could not connect to Weaviate:{e}.") from e

/usr/local/lib/python3.10/dist-packages/weaviate/connect/v4.py in get_meta(self)
    577         """
    578         response = self.get(path="/meta")
--> 579         res = _decode_json_response_dict(response, "Meta endpoint")
    580         assert res is not None
    581         return res

/usr/local/lib/python3.10/dist-packages/weaviate/util.py in _decode_json_response_dict(response, location)
    927             raise ResponseCannotBeDecodedError(location, response)
    928 
--> 929     raise UnexpectedStatusCodeError(location, response)
    930 
    931 

UnexpectedStatusCodeError: Meta endpoint! Unexpected status code: 404, with response body: None.

UnexpectedStatusCodeError: Meta endpoint! Unexpected status code: 404, with response body: None.

1 Like

Hi!

do you see any outstanding logs from Weaviate container?

I need to get back to langchain and play around with this new integration!

We have a recipe repo, and we would like to have more examples there:

Can you also share this dataset?

Thanks!