Hello,
I’m a Weaviate beginner, using java to create a desktop app and Weaviate Cloud Services (WCS) to digest text strings, so that a semantic search can be done for a question asked later on.
At the moment I’ve successfully connected to WCS, created a schema/class, and added some test data, however I’m not able to get it to generate the vector representation.
Schema:
WeaviateClass clazz = WeaviateClass.builder()
.className("Document")
.description("A document")
.vectorIndexType("hnsw")
.invertedIndexConfig(invertedIndexConfig)
.vectorIndexConfig(vectorIndexConfig)
.vectorizer("text2vec")//does nothing
.moduleConfig(vectorIndexConfig)
.properties(new ArrayList<Property>()
{
{
add(Property.builder().dataType(new ArrayList<String>()
{
{
add(DataType.TEXT);
}
}).description("text content").name("content").build());
}
})
I do not want to use a third party embedding service (like text2vec-openai), because I may need to do this for a large volume of data later.
I see these two statements which sort of imply this is not possible, unless I download and run weviate in a docker instance.
- The
text2vec-transformers
module is not available on the WCS. - The
text2vec-contextionary
module is not available on the WCS.
Anyone know if built-in vectorization is possible with WCS ?